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The grand-partition-function-zero method is applied to lattice systems of 
rigid molecules, based on the algebraic technique of Ruelle. Consideration 
of small collections of lattice molecules, through this approach, provides 
rigorous delineation of regions of the complex activity plane which are free 
of zeros of the grand partition function, and hence free of thermodynamic 
singularities. Two conjectures, as yet unproved, are offered, which greatly 
reduce the computational effort required in using the technique. A simple 
proof is provided for the absence of physical phase transitions in monomer- 
dimer systems, and bounds are obtained on the locations of the transitions 
of other lattice gzses. 
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t .  I N T R O D U C T I O N  

Mathemat i ca l ly  r igorous  conclusions abou t  the statistical behavior  o f  systems 
o f  in teract ing molecules are quite l imited in number  and type. When  exact 
results can be obta ined ,  i t  seems the price inevi tably is a loss in general i ty:  a 
restr ic t ion to one d imension ,  the imposi t ion  o f  some asymptot ic  limit, the 
assumpt ion  o f  some specific form o f  in tcrmolccular  potent ial ,  and  so on. The 
role p layed  in stat is t ical  physics by many  o f  these "mode l s "  should not  be 
minimized,  however,  for  they usual ly give rise to the impor tan t  quest ions:  
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How general is this result? How would the result be changed if the model were 
altered ? 

Essentially, this line of  development has been followed over the past two 
decades by the theory of  lattice s tat is t ics-more precisely, by the "'Yang-Lee" 
theory of  phase transitions in lattice s':stems. ~-51 The Yang-Lee approach to 
the subject of  phase transition centers around the grand partition function 
P(z) for a fintite system, with the activity regarded as a complex variable. For 
a finite system with a maximum density, P(z) is necessarily only a polynomial 
and, hence, an entire function. But  the thermodynamics of the system enters 
through the logarithmic function log P ;  consequently zeros of P spoil the 
analyticity of  the thermodynamic functions and account for singularities, or 
phase transitions. 

It is, of  course, true that physically, the activity : = exp(~/z) must be real 
and positive; here,/3 = (kT) -1 and/z  is the chemical potential. It is also true 
that the coefficients in the polynomial P (z ) - s ince  they are weighted Boltz- 
mann f ac to r s - a re  also real and positive. It follows easily that for a finite 
system, the zeros of P cannot be on the positive real axis. What does not 
follow easily is what the zeros do as the system becomes infinite; they can 
sneak closer and closer to the positive real axis and wreak the havoc known 
as a phase transition. 

For the square lattice ferromagnetic lsing model -a l ready subdued by 
Onsager6--Lee and Yang showed in 1952 that the partition function zeros 
(pfz's) for the infinite lattice all reside on the unit circle in the complex z 
plane. ~1~ The real axis is thus sliced at - : I (corresponding to vanishing 
magnetic field) by the line of pfz's. All other physical activities (real and 
positive) are points of thermodynamic analyticity. 

In the years following this discovery, it has been learned that the model 
can be generalized to some ex t en t - a s  long as it stays essentially ferromagne- 
t i c - a n d  the pfz's will dutifully stay on the unit circle. It has been learned that 
repulsive intermolecular interactions (switching to lattice-gas language) tend 
to draw the pfz's off the circle and toward the negatire real axis. ~r~ But it has 
also been learned by other techniques c8 to~.a that some "hard-core" systems 
demand a physical phase transition; so in these cases, also, the positive real 
activity axis must be menaced by pfz's. On the other hand, rigorous proofs 
have been obtained to demonstrate the absence of phase transitiens in other 
hard-core systems--notably for the "monomer-dimer"  problem, tin.4 

The original paper of Lee and Yang contained a very important idea: 
that it might prove useful to associate different activities z: with each lattice 
site. The advantage, basically, is that the partition function must be linear in 

= See Re(. !0 for references to approximate techniques. 
6 Heilmann~., has indicated a t~'chnique related to the present method. 



Applications of the Yang-Lee-Ruelle Theory to Hard-Core Lattice Gases 3 

each of these site activities, a great help mathematically. These activities can 
later all be set equal after the benefits of the linearity have been realized. 

Asano ~2~ later added another valuable idea ("contractions") to the 
technique. Let each site be replaced (temporarily) by several surrogates, each 
interacting in only one "direction," and hence independent of each other. The 
surrogates are then successively identified (or contracted) until only the one 
" t rue"  site remains. Asano's contribution, in effect, was the observation that 
sometimes it is possible to keep up with the changes in some properties of the 
partition function as the contractions proceed. We can thus more or less 
build a partition function for an interacting system from simpler, less inter- 
acting ones. 

Finally, Ruellet4~--assisted by a proof contributed by Dyson -- blended 
these two ideas together and obtained a result of considerable generality for 
lattice gas systems. The essence of the theorem is a prescription for the cal- 
culation of regions of the comp!ex activity plane which are free of pfz's, based 
on the molecular interactions postulated in the model. There are two intri- 
guing aspects of Ruelle's theorem. The first is that any application of the 
theorem always yields a rigorous result (in the nature of a rigorous bound). 
The second is that the structure of the prescription injects into statistical 
mechanics the elements of  complex analysis in a new and fundamental way. 

In this p.~per, we will not need the full generality of the theorem, which 
permits interactions of  any type. We will rather focus attention on hard-core 
lattice gas systems, for which every Boltzmann factor is either zero or one. 
This restriction will permit a simplification in the statement of the theorem, 
to which we no,v turn. 

2. R U E L L E ' S  T H E O R E M  F O R  H A R D - C O R E  L A T T I C E  GASES ~4~ 

We let A denote the sites of some lattice, there being ':A ! < oo sites. 
Dimensionality is unimportant; nor need the lattice be "regular," so that we 
may have different types of sites and nonequivalent "bonds" between the 
sites. In fact, for our purposes, it is convenient to inscribe bonds between 
every pair of  sites whose separation is less than the diameter e of the (spheri- 
cal) hard molecules postulated. Only for the "nearest-neighbor hard-core 
lattice gas," then, will our lattice appear conventional; i fo  exceeds the second- 
neighbor distance, there will be additional lines drawn. In other words, every 
line stands for a disallowed configuration for a pair of  molecules. And for 
hard-core molecules, the disallowed overlaps are the only interactions which 
must be considered. 

Now, let the suffix a index a (finite) collection of subsets A, of  the lattice 
sites, together with all affixed bonds. The vertices (sites) of the subsets A~ are 
labeled--corresponding in some way to the vertices of A- -bu t  the subsets 
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themselves are not required to be congruent. If the collection of subsets As 
includes at least one subset site for each lattice site of A (and bond for bond), 
then the collection of subsets {A~} is a "covering" of A. The subset sites are 
the "surrogates" in Asano's contraction scheme. It should be emphasized that 
every site and bond must be covered, and that many may well be multiply 
covered. It might be helpful in the latter case to think of the subset sites which 
multiply cover lattice site 3, for example, to be labeled 3a, 3b, 3c ..... 

Associatedwitheach covering set A~ ,there is a (grand ensemble) partition 
function, a function of as many ( j A~ I ) site activities z, as there are vertices 
in A~. (We are using the Yang-Lee notion of labeled site activities,) We will 
call this partition function simply P~ ; the multivariab!e-partition function for 
the entire lattice we call P4 �9 Also to be associated with each ,/1~ is a collection 
of regions (some or all may be identical) of the complex plane, denoted M:,.~, 
with some important properties: 

1. M~.i is closed [its complement (----M~.~) is open]. 

2. The origin 0 does not belong to M~.~ (0 r M~.;). 

The third property is the crucial one, but we reserve it for inclusion in the 
theorem itself. Before stating the theorem, we hasten to mention that 
neither the choice of covering sets {A~}, nor the assignment of regions 
M,,,~ (1 ~< i ~< I A,  I ) is unique for a given lattice. This is where discretion 
and experience come into play: Some choices give better results than others. 

T h e o r e m  ( R u e l l e ) .  If the regions M~.~ are chosen (for each ~) so that the 
requirement z, E (---~M~.;) for all sites in A~ ensures that P~ J;-= 0, then the 
similar statement can be made for the entire lattice: z: e (-~R;) for all sites 
in A ensures that PA -~ 0, where R; is the region of the complex plane given 
symbolically by the "set product" 

~" = -- I-I (-M~.,)  (l) 

the prodtict being over all values of a such that A~ contains a surrogate of site 
i. More precisely, the set Ri is the collection of numbers z which can be written 
as the product 

z = - 1-I ( - z . . , )  ( 2 )  

where z~.; ~ M,.~ and the product is over the .same values of n just mentioned. 
Some cases can be handled by a "regular covering," by which we shall 

mean (a) all covering sets A~ are congruent, (b) all regions Ms.; are identical 
(simply M), and (c) each site belongs to the same number (s) of covering sets. 
We state the theorem under these conditions as a corollary. 
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Corollary. If z~r (--,M) for each i ensures that P. ~ 0 for each a, 
then zi ~ (-,..R) for each i ensures that P.t @ O, where 

R = ( -- )'+tM**~ (3) 

We have introduced a special notation for the "set power" to emphasize the 
fact that M** '  is not just the collection of points z" (z e M), but rather all 
points of  the form l - l : ;  (z~ ~ M, 1 ~< i ~ s). 

For an outline of the proof of the theorem, we refer to Ruelle's original 
paper, c4} We limit ourselves here to a few general remarks and then turn to 
some applications. First, it should be recalled that Pa is not the usual grand 
partition function for the lattice at h a n d - n o t  until all site activities -~ are set 
equal to some common value, z,- = z for all i, at which point we call the 
function of one variable P(z). Our primary goal is to know the values o fz  for 
which P(,:) vanishes. Tt should be noted clearly that the theorem cannot tell 
us this; it can at best tell us regions of the complex plane where P(z) does not 
vanish and this is possible only if the intersection of the complements of the 
Ri's is not void. If this intersection (over all values of i), 

s = N (~R:) (4) 

is not empty, then we can conclude that P(z) ~ 0 throughout S. Any portion 
of  the pos!tive real axis which intersects S would then be free of any thermo- 
dynamic singularities. 

It should also be noticed that the structure of the theorem requires the 
nonvanishing of each P, as all z:s wander independently throughout their 
allowed territories ("-~M~.3. This permits P, to vanish (by cancellations) in 
"'many more ways" than would be possible if the z,-'s could be forced to be 
equal at this stage. 

The determination of the region S free of  pfz's is thus reduced to the 
following three steps: 

1. Choose some collection of  covering sets. Ustially, congruent sets are 
easier to work with, as are smaller sets--but of  course larger sets may give a 
better answer (larger S). 

2. Write down the grand partition function (multivariable) for each type 
of covering set'and discover (this is where the work enters) regions M,.i so 
that P~ :/: 0 ifzi E ('-~M~.3. 

3, Then determine the regions R, according to the set product formula 
(this is often not easy either), and the pfz-free region S ----- N, (,~R3. 

We turn now to some applications of the theorem. 
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3. N E A R E S T - N E I G H B O R  H A R D - C O R E  L A T T I C E  GASES 

A simple application of  the corollary is both instructive and useful. We 
consider any regularlattice, with coordination number c; the hard molecules 
which are to reside at the lattice sites have diameter greater than the nearest- 
neighbor and less than the second-neighbor distance. For a regular covering, 
we choose the (c I A I/2) nearest-neighbor pairs of sites (together with the 
bonds between them). For a representative set A~, consider the pair of sites 
1 and 2; for this pair of sites, the multivariable grand partition function for 
the postulated molecules is simply 

P~ = 1 +  zl  + z2 (5) 

There is no z l z  z term, due to the hard cores of the molecules. 
Now, according to the prescription of the corollary, we wish to find a 

region M of the complex plane such that P~ will not vanish if neither z z nor 
z 2 are in M. A variety of  choices is possible, but we will consider here only 
two. The first choice, which we denote by M ~z~, keeps z~ and z 2 so small in 
absolute value that their sum cannot possibly be - ! .  Hence, we take 
M ~ = {z: i z I >~ �89 that is, M I1~ is the closed region exterior to a zero- 
centered circle ofradius t. Clearly zl ~ M I1~ and z z r M c~ ensures that P~ -~ 0. 

So far, the identity of the lattice has not entered. But we now must take 
into account the fact that this choice of covering sets covers each lattice site 
with c surrogates; that is, s = c. The region R, which must contain any pfz's 
for the entire lattice, is found from Eq. (3) to be given by the set-power 
((--)'§ A zero-centered circular region (or its complement) is the 
easiest set to raise to a set-power. Even the phase factor (_)~,1 is irrelevant; 
R is simply given by 

R = { z : l z l  ~ 2 -c} (6) 

and the pfz-free region S is the interior of a circle of radius 2 -c. 
This result is easily obtained, and rigorous, but not very useful. It does 

not even prove for us that the linear bard-core lattice has no transition. 
Meeron's calculation tT) on systems of molecules with strictly repulsive forces 
produced the lower bound zb = [ 2B21 -I for any Singularity, where B., is the 
usual second virial coefficient and the bound is on real, positive z. For the 
nearest-neighbor hard-core lattice gas, B z is (c -+- !)/2 and hence Meeron's 
region of  analyticity is 0 ~ z <~ (c q-- 1) -1, which is superior to the above 
bound for any lattice. 

Another choice, M m, is mere fruitful. We take M t~ to be the (closed) 
half-plane 

M '2' -- {z: Re(z) ~< a} (7) 
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where a is any negative real number greater than - z.~ Clearly, Re(P~) > 0 if 
z~ r M t~ and so P~ cannot vanish. The set-powers of M I~ are somewhat more 
difficult to compute, however, and this points up one of the difficulties of 
applying this theorem. Even for the set-square M *.2, it is not obvious how to 
determine the boundary of the region M**"-, and each case must be studied 
individually. For M c21, it may be shown '2at that boundary of M ~0-~**-" is 
given by the ,square of the boundary of Mt"-~"; i.e., by points z of the form 
z = zx 2, with z~ = a + it  for any real t. This boundary line (including also 
the factor of -- 1) is given by 

Re(z) -- - -a  ~ + t 2, lm(z) = - - 2 a t  (8) 

and is the boundary of the pfz-free region S for the linear lattice (see Fig. I). 
Since the entire positive real axis is contained in S, we conclude that the 
linear lattice has no phase t rans i t ion-as  is well known. 

For a lattice of  coordination number fou r - such  as the square lattice or 
diamond la t t ice-we must compute the boundary of the region 

R = - - M  '2'**'i ( 9 )  

Assuming that the boundary points of R arise from four points zi on the 
line z = a -k  it ,  we can show that the four must in fact be identical, at least 
where the boundary crosses the real axis: let R -1. i I  denote the product 

R + i l  = z~z2z3z 4 (10) 

Mc =~. z:Re(zl<- Y2" I 

-I 

-2  

x = -1"4 + y2 

! I t I 

I 2 3 4 

Fig. I. Excluded region M ~=j for nearest-neighbor hard-core lattice gas, with two- 
point covering sets. For  coordinat ion number  c = 2 (linear lattice), the region S is free 
of  zeros of the grand partition function. 
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Fig. 2. Four-point covering sets for the hard-square lattice gas. Each site is represented 
by a surrogate corner of two covering squares. 

and look for the extrema of R subject to I = const = O. The Lagrange 
multiplier technique Ieads to the equations 

[ae(tz -+- ta 4- t4) --  tztat4](aq -~- ?t) = 0 

[a~(tz + ta d- t4) - -  txtat4](at2 + ~) = 0 

[a2(tx q- t2 + tO --  tltzq](at3 + ~) = 0 

[aa(tz q- te + ta) -- tztzta](at~ q- ~) = 0 

a2(tz q- te q- ta q- t4) --  (qtet3 + tltat4 + qt.,t 4 § t2tat4) = 0 

(l l)  

One solution of these equations is t i =  a for all i [and the Lagrange multi- 
plier ,~ is - a2 ] ;  this appears to be the only meaningful solution and gives 
0 ~ z ~ �88 = Zb as the corresponding rcgion of guaranteed analyticity on the 
positive real axis, for the best choice a--namely,  a = .~. This is slightly better 
than Meeron's bound of ~, but still far short of  the "experimental" location 
of  the transition for the square lattice (at z = 3.80). ~al 

The estimate can be improved by using judiciously chosen larger covering 
sets (and fewer of  them). Fig. 2 shows a regular covering with square covering 
sets, containing two surrogates per lattice site. The partition function for one 
of  the squares is 

P~ --  l + z t  + z2 + z3 + h + zxz,  + z2z4 

= ~,, + ~,, 02 )  

where 

fls = �89 + zt + zs + zzzs 

f . ,  = �89 + z= + z, + z~ ,  
(13) 
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We force the nonvanishing o f  P~ by ensuring that  Re(r and Re(r are 
bo th  strictly positive. This we accomplish with the region M '(3~, which lies to 
the left o f  the line given by (see Fig. 3a) 

Y~ = x 2 A- 2x A- ~ (14) 

We have, for  example,  

Re(~l~) = �89 + x l  4- xa -k- xzxa --  Y~Ya (15) 

using the obvious notat ion z~ = x~ + iy~. But if z~ ~ - ~ M  ~s; and za e --~M (a), 

lYe3  [~ < (x~ ~ -4- 2x~ + ~.)(x3" -- 2xa + -~) 

= X12Xa ~ q- 2xzZx3 + 2xxx3 ~ + 4xax3 q- ~xl 2 -" ~xa ~ q- xx -'r- Xa q- �88 

= 1�89 + x~ + x~ + x~x3 i' - ~(x~ - x3) 2 

<~ i �89 + x~ + x,, + x~x., 1' (16) 

It  is easy to show that  ifxz and x3 lie in (,~M~a)), then ~ + x t  --  x3 + xzxa > O. 
This, together  with the inequality (16), establishes the conclusion Re(~z3) > 0. 

(a) (b) 

Fig. 3. (a) Excluded region M ~3~ for the four-point covering sets of Fig. 2. (b) Zero-free 
region of the infinite square lattice. Only the small almond-shaped region near the origin 
is rigorously guaranteed to be free of zeros of the partition function. The cross-hatched 
region is doubly covered by the (negative) set-square of M TM, and the shaded region is 
simply covered. 
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An analogous demonstration shows that z z ~ ( . . . -M TM) and z4 E (--~M t3~) 
requires Re(~:z4)> 0 and hence P, cannot vanish if each z~ satisfies 
z~ ~ (,~M~3~). Since each site of  the square lattice has two surrogates, it is 
now necessary to compute R = - -M ~3~*.2 to determine the pfz-free region 
S = (~-R). This is shown ira Fig. 3b; again the boundary comes from the 
square of the points on the boundary of  M ~3~. The region of analyticity has 
been extended to zb = ~. 

4. FURTHER PROPERTIES A N D  S P E C U L A T I O N S  

There are many details of the application of  the Ruelle theorem which 
are not completely developed but about which some limited information is 
available, and for which some reasonable appearing speculations offer them- 
selves. In this section, we wish at least to formulate the questions in a clear 
fashion and hopefully to project correctly a little beyond that which is known 
with unimpeachable rigor. The uncertainties and speculations all deal with 
the properties of the ("small") partition functions P~ for the covering sets 
A, ; we are thus dealing with finite questions for which answer should be 
obtainable. 

As mentioned earlier, the form of the theorem permits the "excluded 
regions" M~.~ to be different for each site and each covering set, if desired. We 
shall, however, limit our inquiries to the simpler case where all are identical, 
M~.i ---- M; for ease of discussion, we will give a name to the complement of 
M, N = ~-M, for most of the discussion will center on this complement, N. 

Thus, Nis  an open region free of  pfz's for P , ,  in the sense that zi ~ N f o r  
all i ensures that P~ ~- 0. An appropriate "set power" of N (actually of M), by 
virtue of the  main theorem, will produce a pfz-free region of the true partition 
function P. It is thus desirable to make N maximal in some sense, and this 
leads us to the first conjecture: that there is, in fact, a maximal N. To this end, 
we first write P~ in a fairly symbolic way: 

IAal ac, 

e .  = + E + E + ... + Z 1-I 07) 
i= l  k - I  

The maximum number of molecules permitted by the hard-core exclusions 
is d~. 

Two observations about the finite polynomial P~ are clear. First, if each 
zi is sufficiently small in modulus, say [ z , l  < E, then the initial term (one) 
of  Eq. (17) will dominate and P~ cannot vanish. Hence, N (which actually has 
not been defined unambiguously) should contain a circle of radius r about the 
origin. (By the rules of the main theorem, N must contain the origin itself.) 
The second obvious statement about P~ is that, since it is real, positive, and 
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greater than one for z~ real and positive, it cannot vanish if each z~ has a 
sufficiently small argument, say [ Arg(z~) ] < 8. Hence, N should also contain 
a sector of angle 28 bisected by the positive real axis. (See Fig. 4.) 

We can even give an estimate of ,, and in some cases 8. Since e is small 
(compared to one), we can approximate Eq. (17) by its lowest-order terms, 

I,,tr 
e ~ l +  ~ z ,  08) 

and obtain the estimate �9 =-- !A~ I -x. 
W e  estimate 8 for a class of coverings sets which we shall describe as 

"conjugated," a term we use only for :,earest-neighbor exclusion problems. 
A conjugated set A~ is one which meets the requirement that the sites may be 
divided into two equiralent subsets ("sublattices") A and B; more precisely, 
each A site is neighbored entirely b y  B sites and conversely. Furthermore, 
there is a permutation 1"I of the integers 1,2 ..... '.A~ I, which is composed 
entirely of 2-cycles and against which P~ is invariant. The permutation 
(reflection) .rlwould replace each site of sublatticeA by one of sublattice &but  
the net effect on the polynomial P, wouid be nil. Clearly, 't A~ ! must be even. 

For conjugated sets, the highest-order terms in P~ contain products of 
d~ = I A~ I/2 activities, and there are two such terms, one referring to A sites 
and the other to B sites. If each z, has sufficiently large modulus, the poly- 
nomial P~ will be dominated by these two final terms; if also each z~ is 
"sufficiently real," these domi.Jating terms will have positive real part 
and P~ will not vanish. We calculate an upper bound on the maximum 
argument 8, for large modulus, by considering the case 

Arg(z~) = 8, i r A sublattice 
(19) 

Arg(z~) = --8, i e B sublattice 

If  8 = 7r/2d~ = ~r/t A~ I, the two dominating terms will be pure imaginary 

g r  , ~/-/- 

�9 / ~ . / / / / / y : . . . . ( , z / /  

Fig. 4. General form of lhe zero.free region N for a 
finite--covering-set partition function po. 
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and will cancel, permitting (the highest-order terms of) P~ to vanish. We 
thus expect, for conjugated sets, that the region N will contain a sector of 
angle 2rr/[ A~ L bisected by the positive real axis. 

We combine the discussions of the preceding paragraphs into the fol- 
lowing conjecture. 

Conjecture 1. For any covering set As,  we assume that a maximal open, 
pfz-free region N exists which contains the origin and the positive real axis; 
its boundary is assumed to be given by x = q:O'), where 9 is some single- 
valued function. For a conjugated set, asymptotically, C 3'i --~ oo)(p is given 
by x = [y  [ cot(rr/[ A~ !). 

It may be seen that the region ~ M  ~a~ for the square covering sets 
(Fig. 3a) meets the conditions of the conjecture. Also meeting these conditions 
is the special case of the half-plane --~M c21 conjured up for the two-point 
covering sets [Eq. (7)]. 

We now wish to make a stronger conjecture about the actual form of the 
boundary x ----- ~0') of the presumed extant region N, for conjugated sets. We 
have had no concern for the "true" zeros of the "small" partition functions 
P~, where by a " t rue" zero we mean a pont z satisfying P~(z, z, : ..... z) = O. 
This equation has (at most) ! A~ ', solutions; all we can say about them is that 
certainly none of them can reside in the pfz-free region N. But our need is for 
the region N and solving for the points satisfying p~(:, z,..., z) = 0 helps 
hardly at all in defining the maximal region N. What we need is an equation 
to solve for the boundary function ~; this equation is' supplied by the next 
conjecture. 

Conjecture 2. For a conjugated set, x = ~(v) is one branch of the 
solution of  

where 

with 

Q~(z) = 0 (20) 

Q.(z) = P~(z) (20  

zi = z, i �9 A sublattice 

zi = z*, i e  B sublattice 

While we cannot prove this conjecture, it is supported by several obser- 
vations. By their structure, Conjectures 2 and 1 concur in the asymptotic 
region x, I Y i --~ oo. By the definition of conjugated sets, the imaginary part 
of  Q~ automatically vanishes, since the permutation rr on the one hand 
replaces P~ by its complex conjugate and on the other hand leaves it unchanged. 
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While they were not derived in this way, the boundaries of the regions M 12~ 
[Eq. (7)] and M c3~ [Eq. (14)] follow most easily from the prescription given 
by Eqs. (20)-(21). It is of interest that, for 2-point covering sets considered by 
Ruelle for a general finite nearest-neighbor interaction, the correct region is 
given by Conjecture 2 as long as the interaction is repuls i re -but  the technique 
ceases to work when the interaction becomes attractive. 

In any event, the boundary line given by Conjecture 2 is a rigorous outer 
bound on the maximal set N, since the rule does locate zeros of F~--and none 
of  them can be interior to N. 

S. O T H E R  A P P L I C A T I O N S  

We give now a few more applications of the theorem, some of them 
invoking Conjecture 2. 

Continuing with the two-dimensional square lattice (nearest-neighbor) 
discussed in Section 3, we show that the use of larger and larger covering sets 
does not necessarily ensure better results. As shown in Fig. 5, the lattice may 
be covered by square-shaped covering sets of any integral edge length. Such 
covering sets seem attractive since(a) the covering sets are basically one- 
dimensional; (b) within a covering set, all sites are treated equivalently; and 
(c) each site of the lattice belongs to only two covering sets. 

Even so, we have not succeeded in solving the general problem of 
determining a rigorous, maximal pfz-free region N as a function of covering 
set size. We have, however, solved a simpler problem: Using the crutch of 
Conjecture 2, we have determined the points of intersection of N with the 
imaginary axis. These points (they are, of course, a complex conjugate pair) 
map under the negative set-square function of Eq. (3) onto the positive real 

Fig. 5. Alternate covering of the square lattice. 
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X ~ n  even 
X? ?Y n odd 
yO.~OI n e v e n  

Big Squore 

, ~ y  �9 Big Horseshoe 

oln) Qt,',I Q(~I Q(n~ 

Fig. 6. Partition-function definitions for general covering of the square lattice. 

axis and most likely determine the upper bound on the region of analyticity 
provided by these covering sets. It is true that other points on the boundary of 
N map under Eq. (3) onto the positive real axis--any two whose arguments 
add to 7r. Our strong feeling is that the minimum approach to the origin for 
positive numbers comes from the square of the purely imaginary points on 
the boundary of N; in any event, the "big square" covering sets can provide 
no better bound than that predicted by our assumptions. 

We obtain a recursion relation for the Conjecture-2-partition-function 
Q("~(z), where the number of sites in the big square is 2n (see Fig. 6 for 
notation). More particularly, we first obtain the "big-horseshoe" partition 
functions Q(o", ~ ~ o(") where the subscripts portray the occu- 
pancy of the two sites at the ends of the horseshoe. We can then obtain Otn) 
by joining the two ends (provided both are not occupied): 

Q(")  -~- Q(o '~ -}- r -t- o(") (22) 

In terms of  a column vector, 

Q~"(x, y)  : :  ( Q~o"' i Q~) 
~ 0~,,)1 "~ ,r.,, Z u  I 

(23) 

the recursion formula is readily seen to be 

Q(.+I) _ KQ, . )  (24) 
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where 

i) K = x 0 (25)  
0 y 

xy 0 0 

and x and y are, respectively, the activities of sublattice A and B molecules. 
The initial condition is 

(26) 

The general problem, then, is the resolution of Eq. (24), subject to the 
initial .specification (26). The natural approach is through the diagonalization 
of  K--which is possible even though K is not symmetric. The secular equation 
factors, 

0 = )0 - -  ( x  q-- y + 1)A a -}- xy(x q- y + I)A - -  xey  2 

= ( ~ '  - -  xy)[,~ 2 - -  ( x  + y + 1),~ Jr- x y ]  (27) 

from which the eigenvalues may be obtained simply enough. We have carried 
the problem forward only for the special case of 

x = y *  = # (28)  

recommended to us by Conjecture 2. Here, t is a rear number and the four 
eigenvalues are 

[ t  

] ~ _ t  = ( l  - ,o) /2  (29) 

= (I ,o) /2  

with 

`o = (1 - 4t2) ~/'- (30)  

With t real, co will be imaginary if t > ~. 
Since K is not symmetric, both the right and left eigenvectors must be 

determined. Equivalently, if the right eigenvectors are composed into a 
matrix R (which is nonsingular), the inverse of R may be calculated and its 
rows are the left eigenvectors; we call this matrix L. 
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We omit the tabulation of R and L, but they may be used to obtain 

Q,.+t, = KnQ{t~ 

= RAnLQ cu (31) 

where 

A n = diag(r', (--t)", ,3_n, ,~+,) (32) 

While straightforward, these results fully displayed are rather cumbersome. 
The big-square partition function Q~"', defined by Eq. (22), collapses to a 
simple form, however. It is just 

Qt~ - A _ ~  + ,~.n (33) 

where ,~+ and A are given in Eqs. (29) and (30). 
The intersections of the boundary of N with the imaginary axis are thus 

given by the roots of the equation 

A_(t)" + A+(t) n : 0 (34) 

If  we write co = i7, where 7 = ( 4t~ - 1)1'i ~ is real, Eq. (34) is equivalent to 

Ke (l + iy)n _= 0 (35) 

o r  

t a n - ~  = (2k + l)~-/2n (36) 

where k is an integer. The smallest value ofT, and hence of t, and hence the 
intersection nearest the origin, is given by setting k = I. Thus, we have 
finally 

( 4 t  ~ -  I )  112 : tan(rr/2n) (37) 

The solution of this equation for t gives intersection with the imaginary 
axis; hence t-" is the apparent distance of closest approach of pfz-free region 
S to the origin on the positive real axis, so that the bound on analyticity is 

z~ = �88 + tan2(~'/2n)] 

= �88 se&(~r/2n) (38) 

applicable for n ~  2. For n = 2, this result agrees with that obtained earlier 
for the four-point covering set. 

The unfortunate feature of this result is that the bound zb becomes poorer 
and poorer as the size of the covering set increases. This statement is prob- 
ably true regardless of the validity of Coqlecture 2, although the strongest 
claim that can be made with certainty is that for any n, a corapletely rigorous 
bound Zb can be no larger than the one supplied by Conjecture 2. 
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One decided advantage of the present technique is that it is not limited 
in any way to two-dimensional lattices. The simple cubic lattice with nearest- 
neighbor exclusions will serve as an example of  a three-dimensional system. 
Gaunt  c~ has studied this hard-sphere lattice gas by series methods, con- 
cluding that its behavior is qualitatively similar to that of the square lattice. 
There is a phase t ransi t ion-presumably of  second order--near  z---- 1.09. 

The circular region of analyticity referenced in Eq. (6) has radius 
2 -s = 1164. The sixth set-power of the half-plane M 1-01 of  Eq. (7), with 
a = -~, should provide a better estimate. Taking the phase factor ( _ ) r  into 
account, we see that any point on the rays Arg(z) =-- +5rr/6 will map onto the 
positive real axis--along with many other "points" (zt, z 2 ..... z6) whose 
arguments add to (2k + 1)Tr, with k an integer, and which lie to the left of  the 
line Re(z) ----- --~. But the closest approach to the origin for positive numbers 
probably comes from the negative of the sixth power of  the one point 
(--1/2 t i/2v'3), which is 1/27. 

This is an improvement by more than a factor of two, but still not very 
close to the "experimental" transition point. Another type of  covering set is 
suggested by Fig. 7. Imagine the cubic lattice to be constructed by joining the 
smallest possible number of cubical building blocks--by gluing them 
together at the corners. Now imagine that thc top, bottom, front, and back of  
each block is painted red--but  not the sides. The red faces are the covering 
sets, and the four faces described suffice to include all of the edges of  the 
blocks, and hence all of the "bonds" of  the lattice. 

The red faces are identical with the square covering sets studied at the 
end of  Section 3, for which it was concluded that pfz's were confined to the 
regionM ~3~ lying to the left of the  l iney 2 = x 2 + 2x + ~. Now, each vertex o f  
the simple cubic lattice belongs to four red faces, so the pfz's for the entire 
lattice are confined to - - M  131..4. The points whose fourth powers lie on the 
negative real axis lie on the lines y ---- q-x, which intersect the boundary o f  
M t3~ at the two points �88 -.t_ �88 With the minus sign taken into account, these 
points map onto the positive real axis, to yield the bound z~ = 1/64--worse 
than the bound resulting from the two-point covering sets! 

�9 Fig. 7. Covering sets for the simple cubic lattice. 

Sz2161z-z 
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To make an improvement in the bound, we need to take the entire 
eight-point block as a representative covering set--al though we are forced to 
invoke conjecture 2 in order to make any substantial progress. Under that 
assumption, the boundary that quarantines the pfz's is the line of  zeros of  

Q = I  

+ 4z + 4z ~" 

+ 6z 2 + 6z .2 + 4zz* 

+ 4z 3 + 4z .3 

+ z 4 + z .4 

= ( 1  + 8 x +  16x 2 + 8 x  3 + 2 x  a) 

- -  (8 + 24x + 12x2)y z 

+ 2y 4 (39) 

The solution of Q = 0 that is nearest the origin is given by 

y2 -= 2 + 6x q- 3x 2 --  [(7 § 40x q- 80x 2 + 64x z q- 16x4)/2] t/2 (40) 

The region M ~4~ to the left of  this line is presumed by conjecture 2 to 
contain all pfz's. Since each vertex of the simple cubic lattice belongs to two 
of  the eight-point blocks, we are mainly interested in the negative set-square 
of  Mm--especial ly  its intersection with the positive real axis. One such point, 
and probably the closest to the origin, is the image of pure imaginary zeros Of 
Q - t h a t  is, -q- i[2 - (7/2)1/z] ~/z. The resulting real bound is 

zb = 2 - -  (7/2) 1/2 = 0.129... 

This bound represents another more-than-factor-of-two improvement in the 
previous best estimate of  1/27. 

One further application we make deals with the "monomer-d imer  
problem. ''~z~ For any lattice (coordination number c), a partial dimer 
covering can be visualized as a coloring of  some of the bonds of the lattice, 
but no more than one bond incident at any vertex may be colored. (A vertex 
without even one incident bond painted is regarded as occupied by a mono- 
m e r - e a c h  of  the rest by half of  a dimer.) Since the dimers reside, as it were, 
on the bonds of  the original lattice, we may regard the midpoints of  those 
bonds as the possible addresses of  the dimeric molecules. We thus form an 
auxiliary lattice A '  whose sites are those bond midpoints and whose bonds are 
connections between all new sites surrounding each old site (Fig. 8). These 
bonds of  A'  represent all dual occupancy exclusions of  the dimer problem. 5 

s Professor J. Lebowitz pointed out the possibility of using what we have called the auxiliary 
lattice.~ TM 
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/ \  X 

/ \  / ~ / ~  
~ / ' x / r , ~  x /  

A A 

Fig. 8. Auxiliary lattices for the monomer-dimer problem. 

The auxiliary lattice A' is thus a "cactus" formed by joining "stars'" 
together at the vertices. The "stars" are actually complete graphs of order c 
and contain E = c(c  - -  1)/2 edges, or bonds; each site of_/l' belongs to two 
stars. The obvious covering sets to employ are the stars themselves; the 
multivariable partition function for one star is just 

c 

l ' ,= l+~z ,  
t - 1  

since by the dimer rules no two may be simultaneously occupied. We may 
then use the regionM t2~ of Eq. (7) with --c -z < a < 0 for the pfz-contami- 
hated area. But the negative set-square of M cz~ never quite reaches the positive 
reals, so there can be no singularity and no phase transition for any dirner 
problem. Since an external field would only change site activities by constant 
factors, this proof can easily be extended to include nonvanishing external 
(electric) fields--as long as no further intermolecular interaction is induced. 

6. C O N C L U S I O N S  

The Ruelle theorem is an extremely interesting application of  complex 
analysis to the problem of locating singularities of lattice gas systems. The 
technique transforms exact properties of small, finite subsystems into exact 
bounds for the corresponding infinite system. Strictly speaking, the answers 
provided by the theorem are of  the form: region thus-and-so of the complex 
plane contains no zeros of the grand partition function. We can thus prove 
the a b s e n c e  of  singularities under certain restraints, but we cannot prove the 
e x i s t e n c e  of  singularities. The theorem can be very powerful in some cases-- 
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such as for the monomer-dimer problem, which is proven in general to be 
free of physical singularities. 

For hard-molecule lattice systems which are presumed to possess phase 
transitions, the theorem can be used to determine bounds on the portion of 
the positive real activity axis that is free of singularities. The size and nature 
of the "covering sets" employed in applying the theorem determine the 
quality of the bound obtained. It is shown by counterexamples that increasing 
the size of the covering sets does not necessarily improve the bound. 

The algebraic manipulations required to apply the theorem become more 
complicated as the size of the covering sets increases; the calculations re- 
quired, however, are of a type new to Statistical mechanics. Although not yet 
proven, Conjectures 1 and 2 are felt to be true and lighten considerably the 
computational burden for covering sets with sufficient symmetry. 
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